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Using a generalization [l, 21 of the method of factorization for integral equations, the kernels of which can 

have branch points on the real axis, a method of investigating the dynamics of a rigid punch which performs 

shear vibrations on the surface of a pre-stressed half-space is developed. The structure of the solution 

enables an effective analysis to be made of the influence of the initial stresses on the wave process both 

under the punch, and outside of it. The vibrations at the edges of the punch, due to the effect of shear waves 

in the pre-stressed medium, is represented explicitly. 

PREVIOUSLY [3-51, using the linearized theory of the propagation of elastic waves [6,7], a method of 
studying the influence of initial stresses on the wave field under a punch and on the free surface of 
the medium, was developed. The method was based on reducing the boundary value problem of the 
vibrations of the punch to a first-order integral equation, the solution of which was constructed by 
the factorization method [8]. However, this method did not allow for the presence in the kernel of 
the integral equation of branch points on the real axis, which is characteristic of contact problems 
for a half-space. For low-frequency vibrations of the punch, the influence of branch points can be 
ignored [3-5, 81, but in the case of higher frequencies [9] branch points must be taken into account. 

1. THE BOUNDARY-VALUE PROBLEM OF THE EXCITATION OF A PRE-STRESSED 

MEDIUM 

We introduce a Lagrangian system of coordinates x1, x2, x3 associated with the natural 

(undeformed) state of a body occupying the region 1 x1 1, 1 x2 / d CQ, xX GO. When investigating 

processes in a pre-stressed body, three states (configurations) are distinguished [6, 7, lo]: the 
natural (unstressed) state, the initially deformed state and the perturbed state at a given instant of 

time. 
The boundary-value problem of the excitation of a pre-stressed medium by an oscillating load 

distributed in the region Q is described by linearized equations of motion with boundary conditions 

[6, 7, 101 

v ’ 2 = plPlljdt2, &=~‘*p+E”.VlJ 

i 

f (XI. x2)- 
n.(j= - 

x3 = 0, XI’ xp E fI 
-= 0. xg = 0,. x1. x* f$ n (1.1) 

Here V is the Hamilton operator, defined in the coordinates of the natural configuration, n is the 
external normal to the surface xs = 0, f is the given stress vector, u is the displacement vector of an 

arbitrary point of the medium in the perturbed configuration _C” is the deformation gradient of the 
location characterizing the initially deformed state in this case, C* is the generalized stress tensor 
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[6,7] (of Lagrange [7]) and Kirchhoff [lo]), which defines the law of state in a body with initial 

stresses, 2” is the initial stress tensor [7, 101 

(1.2) 
0 0 0 

&n” -= ‘/* I&n. ” -t un, In + ui, mu;, “I 

where E” is the Cauchy-Green strain tensor, the index ’ denotes values relating to the initially 
deformed state, differentiation with respect to Lagrangian coordinates is denoted by the subscript 
after the comma and W” is the elastic potential which, in this case, is assumed to be a tice 
continuously differentiable function. Below, we shall consider media which have an elastic potential 

of the form [6,7] 

W=W(B,, Bz, Bs, B,, Bs) (1.3) 

BI = En,, B2 = &n&,, B3=EnmEmiEin;Bq=E33,Bs=E3nEn3,n=1,2whereB,,B2andB.7 
are algebraic invariants of the strain tensor. 

2. SOLUTION OF THE BOUNDARY-VALUE PROBLEM OF SHEAR VIBRATIONS OF A 
PRE-STRESSED HYPERELASTIC MEDIUM 

Relations (1.1) and (1.2) describe the boundary-value problem of the excitation of an initially 

deformed medium in the most general case, irrespective of the form of the initial stressed state, the 
type of surface load or form of the elastic potential. 

In the presence of a uniform initial deformation of the form 

81n”=6in(hi-l)Xi, &=const, i=i, 2, 3 

(1.1) and (1.2) become much simpler [6, 71. In that case the boundary-value problem of excitation 
can be written in the form [6, 71 (6, is the Kronecker delta) 

Azuz, ~,+AAIz, ss-puz”=O 

AlU2,3 = 1 Q ix,), X,E[--n,U] 
0 , x,c5[--a,al 

A,=h:psz+o,s*‘, Az=hr*p~z+a,,*” 

(2.1) 

(2.2) 

Using the methods of operational calculus and the limiting absorption principle, the solution of 
boundary-value problem (2.1) can be written in dimensionless form 

(2.3) u2’ (x,‘, x3’) = (24-l i k (x,’ -E’, x3’) q’ (5’) dt’ 
-1 

k (s’, x3’) = 
s 

K (a, x3’) cxp (iai’) da, K (a, t) = 
c exp ( I/a2 - x’t) 

r 
l/&z;2 
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Primes will be omitted below. The contour F coincides with the real axis, only deviating from it 
when going upwards round the point --x or downwards round x. This ensures the uniqueness of the 
solution of the problem 181. 

3. INTEGRAL EQUATION OF THE PROBLEM OF THE SHEAR VIBRATIONS 

OF A PUNCH 

Expressions (2.3) define the displacements of an arbitrary point of the medium under the action 
of a load q (Q which is defined in section [ - 1, 11. For the problem of the shear vibrations of a punch 
on the surface of a half-space, these expressions can be rewritten in the form 

u,(x,,O) == (W-r { &,(x,-&q(%)& Ix,]=0 (3.1) 
-1 

i$, (s) = s K,(u) exp (ias) da, I&, (a) I= 
1’ 

(3.2) 

Expression (3.1) is a first-order integral equation for the unknown distribution function of contact 
stresses q(t). It is clear that the function &,(a)is analytic in the complex plane with two cuts which 
do not intersect one another, drawn from the branch points +x strictly in the first and third 
quadrants. As (Y+ CQ we have 1 a/ Ko(a) =c+ O(a-‘). 

In view of the properties of J&,(o) described above, a number of numerical and asymptotic 
methods can be used to solve the integral equation (3.1) which enable an approximate solution of 
the problem to be constructed (see [9, 11, 121, for example). Following the approach described in 
[ 1.21, we write the function ko(a) in the form 

(3.3) 

The constants c, and c_ are chosen to satisfy the condition 

K, (-a) =K_ (a) (3.4) 

Taking into account the properties of the function K,-,(o) noted above, after some manipulation 
we reduce (3.1) to a system of second-order integral equations of the following form (the upper and 
then the lower signs are taken in succession) 

X(z,&) = -~SX(b,f)P(a.z)da+a(z,i), Imz<O (3.5) 
1‘ I 

P(a, ~)=1Y-(a)e-*'~flY,(a)(~+t)f-' 

1 
a(z,-l-)=-- 

2ni S 

Ffa)-I_F(-a) eia da 

1’ 
R+ (a) a -t z 

X(x, ‘f’)=[Q)+(z)f@-(z)]e*‘[K-(r)]-* 

for the auxiliary unknowns X(z, +), which are combinations of q+(z) and Q-(z), the Fourier 
transforms of functions which are continuations of the right-hand side of Eq. (3.1) to the region 
x > 1 (q’(x)) and XC -1 (9-x)) respectively, and F(a) is the Fourier transform of the function f(x). 

The contour F, lies strictly above I, but does not leave the regularity band, which is a certain 
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neighbourhood of the contour I?. In this case the solution of the integral equation (3.1) is given by 
the formula [l, 2, S] 

q (x) - -& 1 [F (u) + W (u) + W (u)] c-~“* [K (u)]-’ du, X<i (3.6) 
1' 

Q~*(u)=*/~[X(TU, +)rtXfGx, -)]K,(u)e*‘” 

The behaviour of the free surface outside the punch is defined by the expression 

cpf (x) = & s @* (u) &“*du, 3: x > 1 
r 

(3.7) 

To illustrate the solution of system (3.5), let us deform the contour I, in the lower half-plane (in 
the region of regularity of the functions K_(o), X(d, &)), so that it goes around the cut from the 
branch point --x to an infinite point parallel to the imaginary axis (from x -i m to --x to the left of 
the cut and from --x to -x-i” to the right of the cut). Representing the integrals for the left- and 
right-hand sides of the cut in the form of a sum and taking account of the relation between the values 
of K, (CC) on those sides, we can write (3.5) in the form 

‘li = ni hi?,, (- zk) 
eXp(%Zk) A+ AZ, = 211-l - !+tk 

where--zk=-X-i&(k=1,2,..., N) are points situated on the sides of the cut [-x, --x -i “I. In 
this way (3.5) has been reduced to the finite system of algebraic equations (3.8), the solutions of 
which can be written in the form: 

(3.9) 

where Bkl are the elements of the matrix inverse to 

A = (&Cr&/(t+zJ ) 

With the help of formulas (3.6) and (3.7), the functions q(x) and q’(x), p-(x) are easily found. 
Let us consider the case 

I (x) =e’“, lxjG1 (3.10) 

Following [8], we continue this function to the intervals x> 1 and x < - 1. This gives us the new 
functions 

rp,+ fx) =(p+ (x) -e+, x>i, cp,-(x) =~II- (x) -e’“, xc-i (3.11) 

Then the functions OL(Z, f) on the right-hand sides of (3.5) are represented in the form 

(3.12) 

Using (3.9) and (3.12), and applying the formulas of the operational calculus [13] to (3.6) and 
(3.7), we obtain 

q (x) == -6 +S+(q,i --x)SS_(rl,i3-x), IxK1 
0 

(3.13) 

pk* @) 

(3.14) 
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. N 

++ 4z K_ fza) eirkfr+%l;* (x 3-_ i), t-X>i 
t&L‘ 

(3.15) 

(3.16) 

From (3.13) and (3.14), it is obvious that the initial stresses affect the singularity, which is 
oscillatory in character. If the multiplier exp(--iwt) is taken into account (a steady process is 
considered), it is clear that rapidly decaying waves move under the punch away from its edges, at a 
velocity equal to that of shear waves in the pre-stressed medium, governed by the initial stresses. 
Similarly, on the free surface [expressions (3.191, there are rapidly decaying waves, the velocity of 
which is also that of shear waves. 

By way of example, 
7) = 0 in (3.10) 1. From 

J.THE CASE OF A PLANE PUNCH 

we will consider the problem of shear vibrations of a plane punch [putting 
(3. E-(3.15) it follows that 

q(x)=qo(x)+q~(~}+q*(x). IxW 

rp’(x)=R(x~l), *x=-l 

q,(x)=-ix[--l+L(i-x)+L(l*x)) 

q,(x)=M,(l-x)+M,(l+x), m=i, 2 

N 

(4.1) 

R (t) = i - erf 1/-- ixt + -i- 
z 
1 K_ (q) Sk+(t) eilrkt 

It=1 

M,(t~=~~b,l/-~((.I(-X)~-i=kt(i-erf~-i((x+z,)t) 
k=t 

bk = It; F Bkt+ (-- Ztt +) 
t% 

Formulas (4.1) give quite a clear idea of the structure of the wave field both under the punch and 
on the free surface. 
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The amplitudinal value of the reactive force acting on the punch from 
form 

the half-space side has the 

+ f- i (zc -j- x) (1- e-2isk (1 - erf f- 2i (x + Q)))] 
- - 

Po=2ix+ (l-4ix)erfl-2ix+2~-2ix/n exp(2ix) 

(4.2) 

The parameter x is related to the initial deformation (X = wa(p/Az)“‘), and therefore the initial 
stresses have a direct influence both on the character of the wave field and on the resultant of the 
contact stresses. Knowing, for instance, the behaviour of the coefficient AZ, with the help of (4.1) 

and (4.2) the features of the interaction of the punch with the pre-stressed medium are fairly easy to 
analyse. In particular, as calculations have shown, for most materials [lo] a positive initial 
deformation (tension) causes a reduction in A2 while a negative initial deformation results in an 

increase in AZ. Thus, initial compression of the medium leads to an increase, tension leads to a 
decrease in vibrations. We note that, in the absence of initial stresses (A2 = l), the degenerate 
component of the contact stresses qa (x), as well as the component PO of the reaction of the medium, 
are identical with the asymptotic solution obtained for large frequencies of vibration in [12]. 

5. NUMERICAL ANALYSIS 

Formulas (4.1) and (4.2) were constructed without reference to the form of the initial stressed state, or to the 
properties or form of the law of state of the material of the medium. Before continuing the investigation, it is 
necessary to specify the properties of the medium. For that purpose, we shall assume that the material is 
compressible and initially isotropic, with an elastic potential. For the latter we can use, for example, the 

potential in the Murnaghan form [6,7] 

Wa=‘12~B,“‘+~B2”+1/JaB,oa+bBtaB20+’lscB30 (5.1) 

where A and k are Lame constants and a, b and c are third-order constants. Assuming that the initial 

deformation is uniform (hi = const), from (2.2), using (5.1), we have 

CII~=CL+bBlO+‘/,c(ri+r~) 

~~i’“=AB~o+aB~n’+bB~O+ri (p+bB,“) +‘/rcri’ (54 

I 3 

B,‘=‘Iz 
c 

r,, Bzo=‘lr 
c 

r”2, &O=‘/* 
c 

rns, r,= Xnz- 1 
n-1 VI=’ “==I 

We will assume that the initial stressed state for this problem is defined by the condition 

a11*o#u22*0’2uJS’0=0 (5.3) 

A numerical analysis shows that the distribution of the contact stresses and the behaviour of the free surface, 
calculated with (4.1) and (4.2) when there is no initial deformation, are of the usual type. 

The material used for the numerical calculations (35KhGSA steel [7, lo]) had the following parameters: 
p = 7.748 x lo3 kg/m3, A = 1.1 x 10” N/m*, p = 0.804 X 10” N/m*, a = -7.09 X 10” N/m*, b = 0.77 x 10” 
N/m’, c = -8.04 x 10” N/m’. 

The graphs of the functions [q”(x) = q(x) when there is no initial deformation in the medium], Req”(x) (solid 
lines) and Imq”(x) (dashed lines) are shown in Fig. 1 for different frequencies of vibration of the punch (curves 
l-3 correspond to parameter values x = 0.03, 0.3 and 1.55). It is clear that at low frequency (X = 0.03), the 
distribution of contact stresses is similar to the static distribution [Req”(x) remains of the same sign and is 
considerably larger than Imq”(x)]. At a medium frequency (X = 0.3) the solution is of the same character but 
Imq”(x) increases rapidly and becomes larger than Req”(x). At a high frequency (X = 1.55), the stress 
distribution under the punch becomes oscillatory, owing to the fact that the wavelength of the shear wave 
excited by the edges of the punch becomes smaller than the size of the punch. The addition of oscillatory terms 

to the penetrating component qO(x) (4.1) transforms Imq”(x) to saddle-shaped form. 
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FIG. 1. Fio. 2. 

Figure 2 shows graphs of the functions [q(x) = q”(x)-q(x) is the change of the contact stresses] Ren(x) 
(solid curves) and Imn(x) (dashed curves) as a function of the initial deformation and frequency [curves l-3 
correspond to A, = 1.005 (tension) for values of x = 0.03, 0.3 and 1.55 and curves 4-6 to hi = 0.995 
(compression) at the same frequencies]. The graphs give a clear illustration of the influence of initial 
deformation on the distribution of contact stresses under the punch at low, medium and high frequencies. The 
points at which Req”(x) is independent of the initial deformation (the intersection of the solid curves 1 and 4,2 
and 5,3 and 6) are of special interest. Their position and number obviously depend very much on the frequency 
and are due to the presence of the oscillating components in q(x) (4.1). The difference in behaviour of Ren(x) 
and Imq(x) is due to the predominant influence of the initial deformation on the penetrating component (which 
is constant at fixed frequency) of q(x) (4.1). 
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